Q: Two resistors when connected in series to a $120-\mathrm{V}$ line use one-fourth the power that is used when they are connected in parallel. If one resistor is $4.8 \mathrm{k} \Omega$, what is the resistance of the other?

A:

Since the two resistors are in parallel, both are exposed to the same voltage, V. Therefore,

$$
\begin{aligned}
P_{\text {parallel }} & =\frac{V^{2}}{R_{1}}+\frac{V^{2}}{R_{2}} \\
& =V^{2}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right) \\
& =V^{2}\left(\frac{R_{1}+R_{2}}{R_{1} R_{2}}\right)
\end{aligned}
$$

$$
\frac{P_{\text {parallel }}}{P_{\text {series }}}=\frac{V^{2}\left(\frac{R_{1}+R_{2}}{R_{1} R_{2}}\right)}{V^{2}\left(\frac{1}{R_{1}+R_{2}}\right)}
$$

$$
\frac{P_{\text {parallel }}}{P_{\text {series }}}=\frac{\left(R_{1}+R_{2}\right)^{2}}{R_{1} R_{2}}
$$

Substituting in our numbers

$$
4=\frac{\left(4.8 \mathrm{k} \Omega+R_{2}\right)^{2}}{(4.8 \mathrm{k} \Omega) R_{2}}
$$

and solving the resulting quadratic equation for R_{2} yields

$$
R_{2}=4.8 \mathrm{k} \Omega
$$

(Although the resistors turn out to be of equal resistance in this case, this is not true in general. For instance, if the power ratio had been 5 instead of 4 , then the second resistor could have been either $1.8 \mathrm{k} \Omega$ or $12.6 \mathrm{k} \Omega$.)

